Processing of acoustic motion in the auditory cortex of the rufous horseshoe bat, Rhinolophus rouxi
نویسنده
چکیده
1 Summary This study investigated the representation of acoustic motion in different fields of auditory cortex of the rufous horseshoe bat, Rhinolophus rouxi. Motion in horizontal direction (azimuth) was simulated using successive stimuli with dynamically changing interaural intensity differences presented via earphones. The mechanisms underlying a specific sensitivity of neurons to the direction of motion were investigated using microiontophoretic application of γ-aminobutyric acid (GABA) and the GABA A receptor antagonist bicuculline methiodide (BMI). In the first part of the study, responses of a total of 152 neurons were recorded. Seventy-one percent of sampled neurons were motion-direction sensitive. Two types of responses could be distinguished. Thirty-four percent of neurons showed a directional preference exhibiting stronger responses to one direction of motion. Fifty-seven percent of neurons responded with a shift of spatial receptive field position depending on the direction of motion. Both effects could occur in the same neuron depending on the parameters of apparent motion. Most neurons with contralateral receptive fields exhibited directional preference only with motion entering the receptive field from the opposite direction (i.e. the ipsilateral part of the azimuth). Receptive field shifts were opposite to the direction of motion. Specific combinations of spatio-temporal parameters determined the motion-direction-sensitive responses. Velocity was not encoded as a specific parameter. Temporal parameters of motion and azimuthal position of the moving sound source were differentially encoded by neurons in different fields of auditory cortex. Neurons with a directional preference in the dorsal fields can encode motion with short interpulse intervals, whereas direction preferring neurons in the primary field can best encode motion with medium interpulse intervals. Furthermore, neurons with a directional preference in the dorsal fields are specialized for encoding motion in the midfield of azimuth, whereas direction preferring neurons in the primary field can encode motion in lateral positions. In the second part of the study, responses were recorded from additional 69 neurons. Microiontophoretic application of BMI influenced the motion-direction sensitivity of 53 % of neurons. In 21 % of neurons the motion-direction sensitivity was decreased by BMI by decreasing either directional preference or receptive field shift. In neurons with a directional preference, BMI increased the spike number for the preferred direction in about the same amount as for the non-preferred direction. Thus, inhibition was not direction specific. In 6 contrast, BMI increased motion-direction sensitivity by either increasing directional preference or magnitude of receptive field shifts in 22 % of neurons. An …
منابع مشابه
Distribution of catecholamine fibers in the cochlear nucleus of horseshoe bats and mustache bats.
The glyoxylic-acid-induced fluorescence technique was applied to demonstrate patterns of catecholaminergic innervation within the auditory brainstem of echolocating bats and the house mouse. In the cochlear nucleus of the rufous horseshoe bat (Rhinolophus rouxi) and the mustache bat (Pteronotus parnellii), species-specific catecholaminergic innervation patterns are found that contrast with the ...
متن کاملTHE JOURNAL OF COMPARATIVE NEUROLOGY 201:25-49 (1981) The Connections of the Inferior Colliculus and the Organization of the Brainstem Auditory System in the Greater Horseshoe Bat (Rhinolophus ferrumequinum)
The connections of the inferior colliculus, the mammalian midbrain auditory center, were determined in the greater horseshoe bat (Rhinolophus ferrumequinum), using the horseradish peroxidase method. In order to localize the auditory centers of this bat, brains were investigated with the aid of cell and fiber-stained material. The results show that most auditory centers are highly developed in t...
متن کاملKinematics and aerodynamics of the greater horseshoe bat, Rhinolophus ferrumequinum, in horizontal flight at various flight speeds.
The kinematics and aerodynamics of the greater horseshoe bat, Rhinolophus ferrumequinum, in horizontal flight at a range of velocities are described. As flight speed increases there is a gradual change in the bat's wingbeat kinematics, wingbeat frequency decreasing and wingbeat strokeplane angles increasing. Associated with these changes are changes in the wings' incidence angles, particularly ...
متن کاملLancet Dynamics in Greater Horseshoe Bats, Rhinolophus ferrumequinum
Echolocating greater horseshoe bats (Rhinolophus ferrumequinum) emit their biosonar pulses nasally, through nostrils surrounded by fleshy appendages ('noseleaves') that diffract the outgoing ultrasonic waves. Movements of one noseleaf part, the lancet, were measured in live bats using two synchronized high speed video cameras with 3D stereo reconstruction, and synchronized with pulse emissions ...
متن کاملComparison of Brain Transcriptome of the Greater Horseshoe Bats (Rhinolophus ferrumequinum) in Active and Torpid Episodes
Hibernation is an energy-saving strategy which is widely adopted by heterothermic mammals to survive in the harsh environment. The greater horseshoe bat (Rhinolophus ferrumequinum) can hibernate for a long period in the hibernation season. However, the global gene expression changes between hibernation and non-hibernation season in the greater horseshoe bat remain largely unknown. We herein rep...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001